963 research outputs found

    The cross-frequency mediation mechanism of intracortical information transactions

    Full text link
    In a seminal paper by von Stein and Sarnthein (2000), it was hypothesized that "bottom-up" information processing of "content" elicits local, high frequency (beta-gamma) oscillations, whereas "top-down" processing is "contextual", characterized by large scale integration spanning distant cortical regions, and implemented by slower frequency (theta-alpha) oscillations. This corresponds to a mechanism of cortical information transactions, where synchronization of beta-gamma oscillations between distant cortical regions is mediated by widespread theta-alpha oscillations. It is the aim of this paper to express this hypothesis quantitatively, in terms of a model that will allow testing this type of information transaction mechanism. The basic methodology used here corresponds to statistical mediation analysis, originally developed by (Baron and Kenny 1986). We generalize the classical mediator model to the case of multivariate complex-valued data, consisting of the discrete Fourier transform coefficients of signals of electric neuronal activity, at different frequencies, and at different cortical locations. The "mediation effect" is quantified here in a novel way, as the product of "dual frequency RV-coupling coefficients", that were introduced in (Pascual-Marqui et al 2016, http://arxiv.org/abs/1603.05343). Relevant statistical procedures are presented for testing the cross-frequency mediation mechanism in general, and in particular for testing the von Stein & Sarnthein hypothesis.Comment: https://doi.org/10.1101/119362 licensed as CC-BY-NC-ND 4.0 International license: http://creativecommons.org/licenses/by-nc-nd/4.0

    The dual frequency RV-coupling coefficient: a novel measure for quantifying cross-frequency information transactions in the brain

    Full text link
    Identifying dynamic transactions between brain regions has become increasingly important. Measurements within and across brain structures, demonstrating the occurrence of bursts of beta/gamma oscillations only during one specific phase of each theta/alpha cycle, have motivated the need to advance beyond linear and stationary time series models. Here we offer a novel measure, namely, the "dual frequency RV-coupling coefficient", for assessing different types of frequency-frequency interactions that subserve information flow in the brain. This is a measure of coherence between two complex-valued vectors, consisting of the set of Fourier coefficients for two different frequency bands, within or across two brain regions. RV-coupling is expressed in terms of instantaneous and lagged components. Furthermore, by using normalized Fourier coefficients (unit modulus), phase-type couplings can also be measured. The dual frequency RV-coupling coefficient is based on previous work: the second order bispectrum, i.e. the dual-frequency coherence (Thomson 1982; Haykin & Thomson 1998); the RV-coefficient (Escoufier 1973); Gorrostieta et al (2012); and Pascual-Marqui et al (2011). This paper presents the new measure, and outlines relevant statistical tests. The novel aspects of the "dual frequency RV-coupling coefficient" are: (1) it can be applied to two multivariate time series; (2) the method is not limited to single discrete frequencies, and in addition, the frequency bands are treated by means of appropriate multivariate statistical methodology; (3) the method makes use of a novel generalization of the RV-coefficient for complex-valued multivariate data; (4) real and imaginary covariance contributions to the RV-coherence are obtained, allowing the definition of a "lagged-coupling" measure that is minimally affected by the low spatial resolution of estimated cortical electric neuronal activity.Comment: technical report, pre-print, 2016-03-1

    Self-trapped states and the related luminescence in PbCl2_2 crystals

    Get PDF
    We have comprehensively investigated localized states of photoinduced electron-hole pairs with electron-spin-resonance technique and photoluminescence (PL) in a wide temperature range of 5-200 K. At low temperatures below 70 K, holes localize on Pb2+^{2+} ions and form self-trapping hole centers of Pb3+^{3+}. The holes transfer to other trapping centers above 70 K. On the other hand, electrons localize on two Pb2+^{2+} ions at higher than 50 K and form self-trapping electron centers of Pb2_23+^{3+}. From the thermal stability of the localized states and PL, we clarify that blue-green PL band at 2.50 eV is closely related to the self-trapped holes.Comment: 8 pages (10 figures), ReVTEX; removal of one figure, Fig. 3 in the version

    Neutrino-driven Explosions

    Full text link
    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core-bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN blast. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next Galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 54 pages, 13 figure

    Microscopic calculation of the equation of state of nuclear matter and neutron star structure

    Full text link
    We present results for neutron star models constructed with a new equation of state for nuclear matter at zero temperature. The ground state is computed using the Auxiliary Field Diffusion Monte Carlo (AFDMC) technique, with nucleons interacting via a semi-phenomenological Hamiltonian including a realistic two-body interaction. The effect of many-body forces is included by means of additional density-dependent terms in the Hamiltonian. In this letter we compare the properties of the resulting neutron-star models with those obtained using other nuclear Hamiltonians, focusing on the relations between mass and radius, and between the gravitational mass and the baryon number.Comment: modified version with a slightly different Hamiltonian and parametrization of the EO

    The 3-D Structure of SN 1987A's inner Ejecta

    Full text link
    Twenty years after the explosion of SN 1987A, we are now able to observe the three-dimensional spatially resolved inner ejecta. Detailed mapping of newly synthesised material and its radioactive decay daughter products sheds light on the explosion mechanism. This may reveal the geometry of the explosion and its connection to the equatorial ring and the outer rings around SN 1987A. We have used integral field spectroscopy to image the supernova ejecta and the equatorial ring in the emission lines of [Si I]+[Fe II] and He I. The spectral information can be mapped into a radial velocity image revealing the expansion of the ejecta both as projected onto the sky and perpendicular to the sky plane. The inner ejecta are spatially resolved in a North-South direction and are clearly asymmetric. We argue that the bulk of the ejecta is situated in the same plane as defined by the equatorial ring and does not form a bipolar structure as has been suggested. The exact shape of the ejecta is modelled and we find that an elongated triaxial ellipsoid fits the observations best. From our spectral analyses of the ejecta spectrum we find that most of the He I, [Si I] and [Fe I-II] emission originates in the core material which has undergone explosive nucleosynthesis. The He I emission may be the result of alpha-rich freeze-out if the positron energy is deposited locally. Our observations clearly indicate a non-symmetric explosion mechanism for SN 1987A. The elongation and velocity asymmetries point towards a large-scale spatial non-spherical distribution as predicted in recent explosion models. The orientation of the ejecta in the plane of the equatorial ring argues against a jet-induced explosion through the poles due to stellar rotation.Comment: Above abstract is abridged. 11 pages, 9 figures. Accepted July 1st 2010 by Astronomy and Astrophysic
    corecore